Основы программирования

Новые типы С++ - Друзья и Объединения
Индекс материала
Новые типы С++
Классы и Члены
Классы
Инициализация
Очистка
Интерфейсы и Реализации
Законченный Класс
Друзья и Объединения
Вложенные Классы
Структуры и Объединения
Конструкторы и Деструкторы
Предостережение
Свободная Память
Вектора Объектов Класса
Небольшие Объекты
Предостережение
Упражнения
Перегрузка Операций
Функции Операции
Предопределенный Смысл Операций
Конструкторы
Константы
Присваивание и Инициализация
Индексирование
Вызов Функции
Класс String
Синтаксис вызова функции
Предостережение
Упражнения
Производные Классы
Производные Классы
Функции
Видимость
Указатели
Иерархия Типов
Конструкторы и Деструкторы
Поля Типа
Виртуальные Функции
Альтернативные Интерфейсы
Реализация
Как Этим Пользоваться
Обработка Ошибок
Обобщенные Классы
Ограниченные Интерфейсы
Добавление к Классу
Неоднородные Списки
Администратор Экрана
Библиотека Фигур
Прикладная Программа
Свободная Память
Упражнения
Все страницы



5.4 Друзья и Объединения

В это разделе описываются еще некоторые особенности, ксающиеся классов. Показано, как предоставить функции не члену доступ к закрытым членам. Описывается, как разрешать конфликты имен членов, как можно делать вложенные описания классов, и как избежать нежелательной вложенности. Обсуждается также, как объекты класса могут совместно использовать члены данные, и как использовать указатели на члены. Наконец, приводится пример, показывающий, как построить дискриминирующее (экононое) объединение.



5.4.1 Друзья

Предположим, вы определили два класса, vector и matrix (вектор и матрица). Каждый скрывает свое представление и прдоставляет полный набор действий для манипуляции объектами его типа. Теперь определим функцию, умножающую матрицу на вектор. Для простоты допустим, что в векторе четыре элемента, которые индексируются 0...3, и что матрица состоит из четырех векторов, индексированных 0...3. Допустим также, что доступ к элементам вектора осуществляется через функцию elem(), котрая осуществляет проверку индекса, и что в matrix имеется аналогичная функция. Один подход состоит в определении глбальной функции multiply() (перемножить) примерно следующим образом:

vector multiply(matrix amp; m, vector amp; v); (* vector r; for (int i = 0; i«3; i++) (* // r[i] = m[i] * v; r.elem(i) = 0; for (int j = 0; j«3; j++) r.elem(i) += m.elem(i,j) * v.elem(j); *) return r; *)

Это своего рода «естественный» способ, но он очень неэфективен. При каждом обращении к multiply() elem() будет взываться 4*(1+4*3) раза.

Теперь, если мы сделаем multiply() членом класса vector, мы сможем обойтись без проверки индексов при обращении к элменту вектора, а если мы сделаем multiply() членом класса matrix, то мы сможем обойтись без проверки индексов при обрщении к элементу матрицы. Однако членом двух классов функция быть не может. Нам нужно средство языка, предоставляющее функции право доступа к закрытой части класса. Функция не член, получившая право доступа к закрытой части класса, назвается другом класса (friend). Функция становится другом класса после описания как friend. Например:

class matrix;

class vector (* float v[4]; // ... friend vector multiply(matrix amp;, vector amp;); *);

class matrix (* vector v[4]; // ... friend vector multiply(matrix amp;, vector amp;); *);

Функция друг не имеет никаких особенностей, помимо права доступа к закрытой части класса. В частности, friend функция не имеет указателя this (если только она не является полноравным членом функцией). Описание friend – настоящее описние. Оно вводит имя функции в самой внешней области видимости

программы и сопоставляется с другими описаниями этого имени. Описание друга может располагаться или в закрытой, или в отрытой части описания класса. Где именно, значения не имеет.

Теперь можно написать функцию умножения, которая исползует элементы векторов и матрицы непосредственно:

vector multiply(matrix amp; m, vector amp; v); (* vector r; for (int i = 0; i«3; i++) (* // r[i] = m[i] * v; r.v[i] = 0; for (int j = 0; j«3; j++) r.v[i] += m.v[i][j] * v.v[j]; *) return r; *)

Есть способы преодолеть эту конкретную проблему эффетивности не используя аппарат friend (можно было бы определить операцию векторного умножения и определить multiply() с ее помощью). Однако существует много задач, кторые проще всего решаются, если есть возможность предоствить доступ к закрытой части класса функции, которая не явлется членом этого класса. В Главе 6 есть много примеров применения friend. Достоинства функций друзей и членов будут обсуждаться позже.

Функция член одного класса может быть другом другого. Например:

class x (* // ... void f(); *);

class y (* // ... friend void x::f(); *);

Нет ничего необычного в том, что все функции члены однго класса являются друзьями другого. Для этого есть даже блее краткая запись:

class x (* friend class y; // ... *);

Такое описание friend делает все функции члены класса y друзьями x.



5.4.2 Уточнение* Имени Члена

– * Иногда называется также квалификацией. (прим. перев.)

Иногда полезно делать явное различие между именами члнов класса и прочими именами. Для этого используется операция ::, «разрешения области видимости»:

class x (* int m; public: int readm() (* return x::m; *) void setm(int m) (* x::m = m; *)

*);

В x::setm() имя параметра m прячет член m, поэтому единственный способ сослаться на член – это использовать его уточненное имя x::m. Операнд в левой части :: должен быть именем класса.

Имя с префиксом :: (просто) должно быть глобальным имнем. Это особенно полезно для того, чтобы можно было исползовать часто употребимые имена вроде read, put и open как имена функций членов, не теряя при этом возможности обращатся к той версии функции, которая не является членом. Например:

class my_file (* // ... public: int open(char*, char*); *);

int my_file::open(char* name, char* spec) (* // ... if (::open(name,flag))(*//использовать open() из UNIX(2) // ... *) // ... *)